銅系半導体へのめっき加工

銅系半導体の場合、ニッケルめっき浴、金めっき浴はアルミ系半導体の場合と同じです。酸による洗浄工程は、通常、汚染物質を除去し、I/O パッドの表面から酸化銅を除去するために行われる。銅の活性化工程は、ラミネート基板めっき業界で使用されているものと同様で、通常はパラジウムベースの触媒を使用します。銅半導体めっきのノウハウは、周囲のパッシベーションを活性化することなく、銅のI/Oパッドを選択的に触媒作用させることができることです。

この無電解めっきプロセスは本質的に低コストであり、フリップチップやWLCSPバンピングのほかにも、以下のようなさまざまな用途に使用することが可能である。

  • ポリマーフリップチップ(1~5μmのNi/Au+導電性エポキシ)。
  • 異方性導電接着剤(10-25umの高さのNi/Au+ACFまたはACA材料)
  • ワイヤーボンディング用銅およびアルミのパッド表面処理(Ni/Au、Ni/Pd、またはNi/Pd/Auの2~5um)。
  • プローブテスト用銅パッドのリサーフェシング(2-5 um Ni/Au, Ni/Pd, またはNi/Pd/Au)

ウエハーのカセットを自動無電解めっきラインで一括処理することにより、高スループット、低コストを実現しています。ニッケルめっきは、金属が露出している面(アルミニウムや銅)にのみめっきを施すため、選択性が高く、UBMの成膜技術として大きなコスト優位性を持っています。従来のUBM析出技術と比較すると、無電解ニッケルの使用には以下のような利点があります。

  • はんだ付け可能な領域を定義するための処理工程(真空金属蒸着、フォトリソグラフィー、マスクエッチングなど)が不要である。
  • 一つのシステムで、すべてのウェーハサイズをチェンジオーバーすることなく処理できる(3″~12″)。
  • めっき技術の設備投資が比較的少なくて済む。
  • 運用コスト(人件費、諸経費)が削減できる。

しかし、集積回路の無電解めっきは、回路を作成するための材料とプロセスの工場固有のばらつきがあるため、困難な場合があります。アルミニウム(または銅)合金の組成、パッド金属下のサブ構造、パッシベーション材料と品質、パッド電位、エネルギー感度(放射線と接地効果)すべてが、めっき速度、均一性、ニッケルの付着に影響を及ぼします。

プロセスの詳細(固有の技術)は一般に特許とはみなされないため、開発者はそのプロセスを独自のものとして扱っています。そのため、無電解ニッケルめっきの詳細を知ることは容易ではありません。

プロセスの最初の3つのステップは、めっきプロセス全体の選択性、ニッケルの形態、アルミニウム(または銅)パッドへのニッケルの接着を決定する上で重要です。一般に、触媒(亜鉛またはパラジウム)の粒子が細かく、均一な薄層を形成するプロセスが、最良のニッケルめっき構造を生み出します。この望ましい構造を作り出すには、特定の化学物質と絶対的な成分比率が重要です。適切なめっき薬品を選択することに加え、製造現場でプロセスを実施する際には、入手可能性、原産地、価格、毒性、浴寿命、廃棄物処理/廃棄、薬品に関する環境問題などを考慮する必要があります。